Esta herramienta "puede acelerar nuestra comprensión del genoma ayudando a cartografiar la ubicación de los elementos funcionales y a determinar sus roles a nivel molecular", estima Natasha Latysheva, también coautora.
"Esperamos que los investigadores lo enriquezcan con más datos y modalidades", señala Kohli sobre el modelo, que ya fue probado por 3.000 científicos de 160 países y que ahora está disponible en código abierto para la investigación no comercial.
"Identificar con precisión las diferencias en nuestros genomas que nos hacen más o menos susceptibles a desarrollar miles de enfermedades es un paso clave hacia mejores tratamientos", observa Ben Lehner, responsable de genómica generativa y sintética en el Wellcome Sanger Institute, de Cambridge.
El investigador, que no participó en el proyecto pero probó el modelo, lo considera "muy eficaz", aunque todavía "lejos de ser perfecto".
"Los modelos de IA son tan buenos como los datos utilizados para entrenarlos", y la mayoría de los conjuntos de datos existentes "son demasiado pequeños y no están suficientemente estandarizados", explica en una reacción al organismo británico Science Media Center (SMC).
AlphaGenome no es una "solución milagrosa para todas las cuestiones biológicas", ya que la expresión de los genes "es influida por factores ambientales complejos, pero constituye una herramienta fundamental", coincide Robert Goldstone, responsable de genómica en el Francis Crick Institute, citado en el mismo texto.
Según él, esta nueva herramienta permitirá a los científicos "estudiar y simular de manera programática las bases genéticas de las enfermedades complejas".